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Let x (*)
n, k , k=1, 2, ..., [n�2], denote the k th positive zero in increasing order of the

ultraspherical polynomial P (*)
n (x). We prove that the function [*+(2n2+1)�

(4n+2)]1�2 x (*)
n, k increases as * increases for *> &1�2. The proof is based on two

integrals involved with the square of the ultraspherical polynomial P (*)
n (x). � 1999

Academic Press

1. INTRODUCTION AND THE MAIN RESULTS

Let x (*)
n, k , k=1, 2, ..., [n�2], denote the k th positive zero in increasing

order of the ultraspherical polynomial P (*)
n (x), n=0, 1, 2, ..., *> &1�2.

A known result, due to Stieltjes [16; 17, Theorem 6.2.11.1], says that for
any fixed n�2 and k, 1�k�[n�2], the positive zeros x (*)

n, k decrease as *
increases. In [14], A. Laforgia proved that the function *x(*)

n, k increases as
* increases at least for 0<*<1. In [1], S. Ahmed et al. have found the
more general result, namely the function [*+(2n2+1)�(4n+2)]1�2 x (*)

n, k

increases as * increases for &1�2<*�3�2. Then in [13], M. E. H. Ismail
and J. Letessier formulated a conjecture in the form that - * x (*)

n, k increases
as * increases for *>0. Later in [12] this was reformulated as the
Ismail�Letessier�Askey conjecture (ILAC):
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ILAC Conjecture. Let n>2 and 1�k�[n�2], then the function
(*+1)1�2 x (*)

n, k increases as * increases for *>&1�2.

This conjecture is supported by the following known facts:

(i) When n=2, x (*)
2, 1=1�- 2(*+1), and n=3, x (*)

3, 1=- 3�2(*+2),
from where the ILAC follows.

(ii) The above mentioned Ahmed�Muldoon�Spigler result implies
the ILAC for &1�2<*<3�2 and n>3.

(iii) In [11], E. Ifantis and the second named author proved the
ILAC for the largest positive zero x (*)

n, [n�2] using a functional analytic
technique.

(iv) Recently D. Dimitrov [2] proved the ILAC for all positive zeros
x(*)

n, k for * # (&1�2, 9�2] and also for * # (&1�2, 3�2+&) and n>1+
(&2+3&+3�2)1�2 where & # N. Moreover he proved this conjecture for the
largest zero x (*)

n, [n�2] as E. Ifantis and P. D. Siafarikas, using different
method. Finally, D. Dimitrov announced in a review paper [3] that he
proved the ILAC for the smallest positive zero x (*)

n, 1 of P (*)
n (x) for *�2.

Our contribution in this direction is the following.

Theorem. Let n�3 and 1�k�[n�2]. Then the function [*+(2n2�+1)�
(4n+2)]1�2 x (*)

n, k increases as * increases for *>&1�2.

Due to the fact that (*+a)�(*+b) increases as * increases provided
a<b and *+b>0, our Theorem implies the ILAC because (2n2+1)�
(4n+2)>1 for n�3.

For the proof of our Theorem we shall need the following definite
integrals. Let I&=I&(n, *) be defined by

I&=I&(n, *)=|
1

&1
(1&x2)*&&&1�2 [P (*)

n (x)]2 dx,

*>&& 1
2 , &=0, 1, 2. (1.1)

Particularly, I0 is well known [17, p. 80],

I0(n, *)=
?21&2*1(n+2*)
n ! (n+*)[1(*)]2 , *> &

1
2

, n=0, 1, ... (1.2)

because it plays a role in the theory of ultraspherical polynomials.
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The formula for I1 is less familiar,

I1(n, *)=
?21&2*1(n+2*)

n ! (*&1�2)[1(*)]2 , *>
1
2

, n=0, 1, ..., (1.3)

but it is equivalent to [8, 281(9)] or [9, 7.314(1)] or to (3.9) in [7].
Finally, the case &=2 is also not incorporated into the standard books

on definite integrals:

I2(n, *)=
?2&2*1(n+2*)

n ! [1(*)]2

(n+*)2+*2&*&1
(*+1�2)(*&1�2)(*&3�2)

,

*>
3
2

, n=0, 1, ... . (1.4)

In Section 3 we shall give a simple proof of the last two formulas.
Let us recall an asymptotic result on the zeros of the ultraspherical poly-

nomials from [6],

x (*)
n, k=hn, k*&1�2 _1&

2n&1+2h2
n, k

8*
+O \ 1

*2+& (* � �), (1.5)

where hn, k denotes the corresponding zero of the Hermite polynomial
Hn(x). Then clearly,

lim
* � � _*+

2n2+1
4n+2 &

1�2

x (*)
n, k=hn, k

and combining this limit with the monotonicity stated in our Theorem, we
conclude

Corollary. For the positive zeros x (*)
n, k of the ultraspherical polynomial

P(*)
n (x) the inequality

_*+
2n2+1
4n+2 &

1�2

x (*)
n, k<hn, k for *>&

1
2

, k=1, 2, ..., _n
2&

holds.

The zeros hn, k of the Hermite polynomial Hn(x) have different
asymptotic behavior near x=0 or for large values of x when n tends to
infinity [17, p. 130, 132],
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lim
n � �

- 2n+1 hn, 1={?�2
?

if n even,
if n odd,

(1.6)

hn, [n�2]=- 2n+1&O(n&1�6). (1.7)

Applying this information, we get for the zero x (*)
n, 1 :

�*+
2n2+1
4n+2

x (*)
n, 1=hn, 1 _1&

4(2n+1) h2
n, 1&3

8(2n+1) *
+O \ 1

*2+&
for *>>n>>1

hence by (1.6) the result formulated in our Theorem is rather sharp, in
other words, it would be a hard task to improve this Theorem keeping it
valid for all n, for all *> & 1

2 , and for all positive zeros of P (*)
n (x).

For the largest zero of the ultraspherical polynomials our result is not so
sharp. In that case the asymptotic formula for x (*)

n, k and (1.7) give

x (*)
n, [n�2] =[- 2n+1&O(n&1�6)]

1

- *+(3n+O(n1�3))�2+O(1�*)

t
- 2n

- *+(3�2) n
, *>>n>>1.

Now this relation can be compared favorable with another inequality
from [5]:

x (*)
n, [n�2]<

- n2+2n*
n+*

because

- 2n

- *+(3�2) n
&

- n2+2n*
n+*

=O \\n
*+

5�2

+ for *>>n>>1.

Another corollary would be formulated by using our Theorem if we
compare a positive zero x (*)

n, k with x (*0)
n, k where *0 is chosen particularly; e.g.,

for *0=0, C (0)
n (x)=(2�n) Tn(x), hence the zeros are cos((2m&1)�2n) ?, for

*0=1: C (1)
n (x)=const Un(x) with zeros cos(m�n+1) ?. Then

\*+
2n2+1
4n+2 +

1�2

x (*)
n, kY\*0+

2n2+1
4n+2 +

1�2

x (*0)
n, k if *<

>*0 .
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2. PRELIMINARIES

Our proof is based on the application of the generalized Richardson
formula established in [7]: if U(t)=U(*, t) is a solution of

d 2U(t)
dt2 +R(*, t) U(t)=0

with the condition either U(0)=0 or (d�dt) U(0)=0, and c(*) is a zero of
U(*, t)=0, then c(*) is a differentiable function and

_ d
dt

U(*, c(*))&
2 dc(*)

d*
=&|

c(*)

0

�R(*, t)
�*

U2(*, t) dt (2.1)

provided (���*) R(*, t) is continuous on [0, c(*)]. This formula was found
by Richardson [15] in the case U(0)=0.

It is well known that the ultraspherical polynomial Pn(x)=P (*)
n (x) of

degree n satisfies the second order differential equation [17, p. 80]

(1&x2) y"&(2*+1) xy$+n(n+2*) y=0 (2.2)

and the polynomials [P(*)
n (x)]�

n=0 are orthogonal on the interval [&1, 1]
with the weight function (1&x2)*&(1�2) which means that

|
1

&1
(1&x2)*&(1�2) P (*)

n (x) P (*)
m (x) dx=0 if n{m.

On the other hand, by the symmetry relation Pn(&x)=(&1)n Pn(x) we
have Pn(0) P$n(0)=0. The function u(x)=(1&x2)*�2+1�4 P (*)

n (x) satisfies
the Sturm-Liouville differential equation

d 2u(x)
dx2 +Q(*, x) u(x)=0,

where

Q(*, x)=
(n+*)2

1&x2 +
1�2+*&*2+x2�4

(1&x2)2 .

By substitution t= f (*)x with f (*)=[*+(2n2+1)�(4n+2)]1�2, the func-
tion U(t)=u(x) satisfies the differential equation

d 2U(t)
dt2 +R(*, t) U(t)=0

with

R(*, t)=[ f (*)]&2 Q(*, t�f (*)).
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Making the substitutions t2={ and f 2=.(*)=*+(2n2+1)�(4n+2), we
have

S(*, .(*), {)=R(*, t)=
(n+*)2

.(*)&{
+

.(*)(1�2+*&*2)+{�4
(.(*)&{)2 .

It is clear that U(0) U$(0)=0 so we can apply the Richardson formula
(2.1). Thus we have to calculate the derivative (d�d*) S(*, .(*), {):

(.(*)&{)3 d
d*

S(*, .(*), {)=A{2+B{+C, (2.3)

where

A=2(n+*),

B=&(4n+2*+1) .(*)+*2&*&1+(n+*)2,

C=(2n+1) .2(*)+[*2&*&1�2&(n+*)2] .(*).

By definition of .(*) we have C=0. Let {0=&B�A. Then {0�.(*) if
* # (&1

2 , 3
2], and 0<{0<.(*) if *> 3

2 , hence

<0 for 0<{<.(*) if * # \&
1
2

,
3
2& ,

dS(*, .(*), {
d* {<0 for 0<{<{0 if *>

3
2

, (2.4)

>0 for {0<{<.(*) if *>
3
2

.

Now let c(*)= f (*) x (*)
n, k be a positive zero of U(*, t)=0, hence by (2.1) the

sign of dc(*)�d* is determined by the integral

8(c)=&|
c

0

dS(*, .(*), t2)
d*

U2(*, t) dt, 0<c< f (*). (2.5)

According to (2.4), this integral is always positive if * # (&1
2 , 3

2] because the
integrand itself is negative. This fact was already exploited in [4]. Our
main observation here is that this integral is positive also for *>3�2. By
(2.4) the function 8(c) increases as c increases for 0<c<- {0 , and 8(c)
attains its maximum at c=- {0 , then 8(c) is decreasing on (- {0 , f (*)). At
the endpoint c= f (*) it is vanishing, i.e., we have the following result.

Lemma. The function 8(c) defined in (2.5) is positive for 0<c< f (*)
and 8(0)=8( f (*))=0.
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It is clear that Lemma implies our Theorem. Therefore by (2.4), (2.5) we
have ``only'' to show that

|
f (*)

0

dS(*, .(*), t2)
d*

U2(*, t) dt

= f &3(*) |
1

0

A.(*) x4+Bx2

(1&x2)3 (1&x2)*+1�2 P2
n(x) dx=0 for *>

3
2

.

(2.6)

3. PROOFS

Proof of Relations (1.3), (1.4).1

For &=1, 2, *>&& 1
2 we have by (1.1)

(2*&2&+1)(I&&I&&1)

=(2*&2&+1) |
1

&1
(1&x2)*&&&1�2 x2P2

n(x) dx

=&|
1

&1
[(1&x2)*&&+1�2]$ xP2

n(x) dx

=[&(1&x2)*&&+1�2 xP2
n(x)]1

&1

+|
1

&1
(1&x2)*&&+1�2 [P2

n(x)+2xPn(x) P$n(x)] dx

=I&&1+2 |
1

&1
(1&x2)*&&+1�2 xP$n(x) Pn(x) dx. (3.1)

In case &=1 the last integral can be easily determined: since xP$n(x)=
nPn(x)+�n&2

i=0 cn, i xi where cn, i are constant, the orthogonality of the poly-
nomials [Pn(x)]�

n=0 gives for this integral

|
1

&1
(1&x2)*&1�2 xP$n(x) Pn(x) dx

=|
1

&1
(1&x2)*&1�2 \nPn(x)+ :

n&2

i=0

cn, ix i+ Pn(x) dx

=n |
1

&1
(1&x2)*&1�2 P2

n(x) dx=nI0 ,
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hence by (3.1)

(2*&1) I1=2(n+*) I0 for *> 1
2 . (3.2)

By (1.2), (3.2) the formula (1.3) follows.
In case &=2 we proceed in the following way. By (2.2) we have for

y=Pn(x)

(1&x2) P"n(x)&(2*+1) xP$n(x)+n(n+2*) Pn(x)=0.

Multiply this identity by (1&x2)*&3�2 Pn(x) and integrate it over [&1, 1]
we obtain

(2*+1) |
1

&1
(1&x2)*&3�2 xP$n(x) Pn(x) dx

=&|
1

&1
(1&x2)*&1�2 P"n(x) Pn(x) dx+n(n+2*) I1 ,

where the integral on the right hand side is zero because of the ortho-
gonality. Hence we get by (3.1)

2(*& 3
2)(*+ 1

2) I2=[(n+*)2+*2&*&1] I1 (3.3)

and (1.4) follows from (1.3). K

Proof of Relation (2.6). Taking into account of the actual values A=
2(n+*) and B in (2.3), we have

A.(*) x4+Bx2=.(*)[2(n+*)(1&x2)2&(2*&1)(1(&x2)]

+_2 \*+
1
2+\*&

3
2+&[(n+*)2+*2&*&1](1&x2)& .

Then by (1.1) we obtain for the integral in (2.6)

1
2 |

1

&1

A.(*) x4+Bx2

(1&x2)3 (1&x2)*+1�2 P2
n(x) dx

=.(*)[2(n+*) I0&(2*&1) I1]

+_2 \*+
1
2+\*&

3
2+ I2[(n+*)2+*2&*&1] I1& ,

hence the relations (3.2), (3.3) imply that this integral is zero. K
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Note added in proof. In 1984 A. Laforgia [18] conjectured that the function *x (*)
n, k

increases for *>0 and this conjecture initiated the ILAC.
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